DEPARTMENT OF ANIMAL & AVIAN SCIENCES

College of Agriculture and Natural Resources

Genome Editing in Agricultural Animals: Opportunities and Challenges

Bhanu Telugu

Overview of the talk

• Rationale for performing genome editing

Genome editing using CRISPRs

• Path forward

Overview

Rationale for performing genome editing in livestock

Animal Biotechnologies in Context

Ο Ν Ε Ν Ν Μ

Genetic Modification

- Mass selection
- Pedigree selection
- Marker-assisted selection
- Transgenics (1980s) (GE Animals)
- Genome-wide selection
- Gene Editing (2000s) "Precision Breeding"

Change Genetic Makeup

Objective

Source: Dr. Diane Wray-Cahen

Genetic bottleneck associated with conventional breeding

Figure 1. Trends in milk yield (•) and Daughter Pregnancy Rate (○) for US Holsteins. Data are from USDA-ARS Animal Improvement Programs Laboratory, February 2007 (available at http://aipl.arsusda.gov/ARSWeb/eval/summary/trend.cfm).

Genetic bottleneck associated with conventional breeding

Telugu et al., *NIB*, 2017

Rational Selection via Genome editing to accelerate genetic selection

:Undesirable allele :Undesirable QTN

Telugu et al., NIB, 2017

Rational Selection via Genome editing to accelerate genetic selection

:Undesirable allele :Undesirable QTN

Telugu et al., NIB, 2017

Rationale for Genome editing over Conventional Breeding

– Separate "linked" genes

- Overcome otherwise low heritability
- Increase precision and efficiency of introducing desirable traits (*conventional breeding is random*)
- Introduction of traits not available via conventional breeding

Engineering novel traits Project: Eliminating boar taint

Boar taint

- Boar taint is an offensive off order and taste found in uncastrated male pigs.
- The major compounds responsible for boar tainted are **androstenone** and skatole, and both compounds are accumulated in fat.
- The goal of this study is to reduce 6androstenone production

QTL analysis

 A rare polymorphism in the porcine CYB5 gene just upstream of the translational start site results in decreased production of CYB5 and decreased synthesis of androstenone (Peacock et al., 2008).

Boar taint etiology

Comparative genomics

Steroid binding pocket of CYB5A

	1	11	21	31	41	
Rat CYB5	MAEQSDKDVK	YYTLEEIQKH	K dskstw v il	HHKVYDLTKI	E LEEHPG	GEEV
human CYB5	MAEQSDEAVK	YYTLEEIQKH	N HSKSTW L IL	HHKVYDLTKI	E LEEHPG	GEEV
pig CYB5	MAEQSDKAVK	YYTLEEIQKH	N NSKSTW L IL	HHKVYDLTKI	E LEEHPG	GEEV
Steroid binding pocket of CYP17A1						
	80	90	100	110		120
Human	QLAKEVLIK	K GKDFSGR	PQM A tl di <i>a</i>	SNNR K gia	FAD SGA	HWQL
Pig	QLAKEVLLK	K GKEFSGR	prv M tl dii	SDNQ K gia	FAD HGT	SWQL
Rat	OLAREVLIK	K GKEFSGR	POM V TQ SLI	SDOG K gva	FADAGS	SWHL

In vitro mutagenesis screen

CYB5 mutations with CYP17				16A/DHEA
mutations	170HP	DHEA	16A	ratio
R52M +L102Q	1.174	0.699	0.607	1.032
R52M +I112V	1.257	0.566	0.282	0.567
R52M +L102Q/I112V	1.500	1.162	0.750	0.282
R52M/D103S	1.282	0.761	0.457	0.600
R52M/S106A	1.484	0.529	0.616	1.167
R52M/NQ108QG	1.176	0.861	0.563	0.653
N62S + D103S	0.897	1.166	0.912	0.787
N62S + 104L	0.904	1.317	1.760	1.484
N62S + S106D	1.252	0.071	0.399	2.042
N62S +L102Q/I112V	1.032	0.963	0.748	0.765
R52M+N62S/D103S	1.195	0.827	0.534	0.645
R52M+N62S/S106A	1.437	0.546	0.799	1.462
R52M+N62S/NQ108QG	1.130	0.877	0.771	0.881
R52M+N62S + L102Q/D103S/I112V	1.130	0.839	0.333	0.426
R52M/G57R/N62S/T70S + L102Q/D103S/I104L/NQ108QG/I112V	1.536	0.257	0.503	1.979
G57R + D103S	0.950	1.085	0.905	0.836
G57R + NQ108QG	0.833	1.255	1.231	0.983
T70S + D103S	0.947	1.087	0.937	0.863
T70S + NQ108QG	0.855	1.221	1.201	1.180
N21K + D103S	1.132	0.835	0.490	0.585
L28V + D103S	1.068	0.924	0.643	0.693
N21K/L28V + D103S	1.110	0.867	0.588	0.677

Efficiency of generating genetically engineered pigs by SCNT and CRISPR/Cas9 system

Cell sources	No. recipients	No. pregnancy	No. delivered	No. piglets (fetuses)
KI-CYP17a1	1	1/1 (100)	-	(11)

* Cloning efficiency that was obtained by total no. fetus / total no. transferred embryos

Screening of CYP17A1 targeted fetuses by restriction enzyme (BstZ17I) digestion

P: PCR product D: Digest with BstZ17I Boar taint project Summary

• Edit CYB5 locus on CYP17^{mut} background.

• Perform NT with the *CYB5* and *CYP17* double mutants and Wild type controls

 Screen for steroid profile at weaning and at puberty

II. Engineering novel traits Applied technologies

Regulatory bottleneck

How to close the genetic lag of the edited population given the long generation interval?

Objective:

- 1) Generate Surrogate sires; and
- 2) Germ cell transplantation to propagate/ disseminate genetics

I. Generating knockout animals Project: Generation of germ cell ablated pigs

www.nature.com/scientificreports

SCIENTIFIC REPORTS

Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene

Ki-Eun Park^{1,2,3,*}, Amy V. Kaucher^{4,*}, Anne Powell², Muhammad Salman Waqas⁴, Shelley E.S. Sandmaier^{1,2}, Melissa J. Oatley⁴, Chi-Hun Park^{1,2}, Ahmed Tibary⁴, David M. Donovan², Le Ann Blomberg², Simon G. Lillico⁵, C. Bruce A. Whitelaw⁵, Alan Mileham⁶, Bhanu P. Telugu^{1,2,3} & Jon M. Oatley⁴

Knockout

Generation of NANOS2 knockout germ cell free animals for SSC transplantation

CRISPR/cas9 + sgRNA mRNA

surg date	DOB	piglet#	sex		
9/23/2014	1/15/2015	1	male	Mosaic	
9/23/2014	1/15/2015	2	male	homozygous KO	
9/23/2014	1/15/2015	3	female	Heterozygous	
9/23/2014	1/15/2015	4	female	homozygous KO	
9/23/2014	1/17/2015	10	male	Bi-allelic	
9/23/2014	1/17/2015	11	male	Bi-allelic	
9/23/2014	1/17/2015	12	nale	homozygous KO	
9/24/2014	1/18/2015	20	le	Bi-allelic	
9/24/2014	1/18/2015	21		homozygous KO	
9/24/2014	1/18/2015	22		Bi-allelic	
9/24/2014					
9/24/2014	1/18/-		pialets	sous KO	
9/24/2014	1/18/2015			Bi-allelic	
9/24/2014	1/18/2015			homozygous KO	
9/24/2014	1/18/2015	/	•	homozygous KO	
9/24/2014	1/18/2015		man	Bi-allelic	
9/24/2014	1/18/2015	29	male	Bi-allelic	
9/24/2014	1/18/20/	30	male	hon zygous KO	
9/24/2014	1/18/2015	0	male	-	

Seminiferous tubule morphology

Adult

Pre-Pubertal

NANOS2 -/-

Lack of sperm production in NANOS2 null males

Semen collected by manual stimulation

- The role of NANOS2 in male fertility is conserved in pigs (other livestock ?)
- Females knockout for NANOS2 are fertile

Future goals:

- Expanded the NANOS2 null boar by SCNT (n=6)
- SSC transplantations were performed.

Future directions

Genome editing in embryos followed by nuclear transfer

Rationale: Diminished returns

Donor animals

Outline

Generation of live pigs by embryonic fibroblasts

Modified from: Galli et al., Xenotransplantation 2010

Extraembryonic (XEN) cells established from porcine embryos

Park et al., unpublished

Where do we go from here ?

Other applications: In vitro breeding (Genetic selection in vitro)

Summary

• Use the methodologies for genomic selection (in vitro breeding)

• The in vitro methodologies will permit for multiplexing edits, before generating live offspring.

Acknowledgements

Postdocs:

- Dr. Ki-Eun Park (R)
- Dr. Chi-Hun Park
- Dr. Namdori Mtango (R)
- Dr. Anjali Nandal

Research Assistants:

- Anne Powell (R)
- Juli Frey
- Jessica Martin
- Jessica Bridge

Graduate students:

- Shelley Sandmaeier
- Laramie Pence
- Timothy Sheets

Announcement September 23-25, 2017

6th Swine in Biomedical Research Conference Baltimore, MD September 23-25, 2017

Organizing Chair: Dr. Bhanu Telugu